5,330 research outputs found

    Gauge invariance, radiative interferences and properties of vector mesons

    Full text link
    We state the implications on the properties of vector mesons due to gauge invariance. In particular, we find that polarized vector mesons exhibit a property in the radiation distribution of order ω1\omega^{-1} in the photon energy, namely it is null when the gyromagnetic ratio becomes g=2g=2. Therefore, the generalization of the Burnett-Kroll theorem for polarized vector-meson states is held only if g=2g=2. In addition, radiative interferences between the electric charge and any gauge invariant term is found to be parametrized by a common global factor which can be used to extract information of the involved states by a proper choice of the kinematical region, where they could be relevant.Comment: 5 pages, 1 figure. To appear in the Proceedings of the IX Mexican Workshop on Particles and Fields, Colima Mexico. Uses RevTex

    Integral Field Spectroscopy of HH 262: The Spectral Atlas

    Full text link
    HH 262 is a group of emitting knots displaying an "hour-glass" morphology in the Halpha and [SII] lines, located 3.5' to the northeast of the young stellar object L1551-IRS5, in Taurus. We present new results of the kinematics and physical conditions of HH 262 based on Integral Field Spectroscopy covering a field of 1.5'x3', which includes all the bright knots in HH 262. These data show complex kinematics and significant variations in physical conditions over the mapped region of HH 262 on a spatial scale of <3". A new result derived from the IFS data is the weakness of the [NII] emission (below detection limit in most of the mapped region of HH 262), including the brightest central knots. Our data reinforce the association of HH 262 with the redshifted lobe of the evolved molecular outflow L1551-IRS5. The interaction of this outflow with a younger one, powered by L1551 NE, around the position of HH 262 could give rise to the complex morphology and kinematics of HH 262.Comment: Accepted for publication in MNRA

    Deep Near-Infrared Surface Photometry and Properties of Local Volume Dwarf Irregular Galaxies

    Full text link
    We present deep H-band surface photometry and analysis of 40 Local Volume galaxies, a sample primarily composed of dwarf irregulars in the Cen A group, obtained using the IRIS2 detector at the 3.9m Anglo-Australian Telescope. We probe to a surface brightness of ~25 mag arcsec2^{-2}, reaching a 40 times lower stellar density than the Two Micron All Sky Survey (2MASS). Employing extremely careful and rigorous cleaning techniques to remove contaminating sources, we perform surface photometry on 33 detected galaxies deriving the observed total magnitude, effective surface brightness and best fitting S\'ersic parameters. We make image quality and surface photometry comparisons to 2MASS and VISTA Hemispheric Survey (VHS) demonstrating that deep targeted surveys are still the most reliable means of obtaining accurate surface photometry. We investigate the B-H colours with respect to mass for Local Volume galaxies, finding that the colours of dwarf irregulars are significantly varied, eliminating the possibility of using optical-NIR colour transformations to facilitate comparison to the more widely available optical data sets. The structure-luminosity relationships are investigated for our `clean' sample of dwarf irregulars. We demonstrate that a significant fraction of the Local Volume dwarf irregular population have underlying structural properties similar to both Local Volume and Virgo Cluster dwarf ellipticals. Linear regressions to structure-luminosity relationships for the Local Volume galaxies and Virgo Cluster dwarf ellipticals show significant differences in both slope and scatter around the established trend lines, suggesting that environment might regulate the structural scaling relationships of dwarf galaxies in comparison to their more isolated counterparts.Comment: 27 pages, 14 figures, 5 table

    The complex structure of HH 110 as revealed from Integral Field Spectroscopy

    Full text link
    HH 110 is a rather peculiar Herbig-Haro object in Orion that originates due to the deflection of another jet (HH 270) by a dense molecular clump, instead of being directly ejected from a young stellar object. Here we present new results on the kinematics and physical conditions of HH 110 based on Integral Field Spectroscopy. The 3D spectral data cover the whole outflow extent (~4.5 arcmin, ~0.6 pc at a distance of 460 pc) in the spectral range 6500-7000 \AA. We built emission-line intensity maps of Hα\alpha, [NII] and [SII] and of their radial velocity channels. Furthermore, we analysed the spatial distribution of the excitation and electron density from [NII]/Hα\alpha, [SII]/Hα\alpha, and [SII] 6716/6731 integrated line-ratio maps, as well as their behaviour as a function of velocity, from line-ratio channel maps. Our results fully reproduce the morphology and kinematics obtained from previous imaging and long-slit data. In addition, the IFS data revealed, for the first time, the complex spatial distribution of the physical conditions (excitation and density) in the whole jet, and their behaviour as a function of the kinematics. The results here derived give further support to the more recent model simulations that involve deflection of a pulsed jet propagating in an inhomogeneous ambient medium. The IFS data give richer information than that provided by current model simulations or laboratory jet experiments. Hence, they could provide valuable clues to constrain the space parameters in future theoretical works.Comment: 12 pages, 15 figures Accepted in MNRA

    Enseñanza de ELE a través de un sistema informático de análisis textual disponible en Internet

    Full text link
    La creciente importancia de los corpus de textos digitalizados para la enseñanza de lenguas ha sido puesta de manifiesto por distintos autores a lo largo de los últimos años. Tribble y Jones (1990), Flowerdew (1993), Botley et al. (1996) y Sánchez (2000), entre otros, han subrayado la utilidad didáctica de los corpus textuales y de los sistemas informáticos que permiten consultarlos

    Kramers polarization in strongly correlated carbon nanotube quantum dots

    Get PDF
    Ferromagnetic contacts put in proximity with carbon nanotubes induce spin and orbital polarizations. These polarizations affect dramatically the Kondo correlations occurring in quantum dots formed in a carbon nanotube, inducing effective fields in both spin and orbital sectors. As a consequence, the carbon nanotube quantum dot spectral density shows a four-fold split SU(4) Kondo resonance. Furthermore, the presence of spin-orbit interactions leads to the occurrence of an additional polarization among time-reversal electronic states (polarization in the time-reversal symmetry or Kramers sector). Here, we estimate the magnitude for the Kramer polarization in realistic carbon nanotube samples and find that its contribution is comparable to the spin and orbital polarizations. The Kramers polarization generates a new type of effective field that affects only the time-reversal electronic states. We report new splittings of the Kondo resonance in the dot spectral density which can be understood only if Kramers polarization is taken into account. Importantly, we predict that the existence of Kramers polarization can be experimentally detected by performing nonlinear differential conductance measurements. We also find that, due to the high symmetry required to build SU(4) Kondo correlations, its restoration by applying an external field is not possible in contrast to the compensated SU(2) Kondo state observed in conventional quantum dots.Comment: 8 pages, 4figure

    Temporal and spatial variations of the absolute reflectivity of Jupiter and Saturn from 0.38 to 1.7 μ\mum with PlanetCam-UPV/EHU

    Full text link
    We provide measurements of the absolute reflectivity of Jupiter and Saturn along their central meridians in filters covering a wide range of visible and near-infrared wavelengths (from 0.38 to 1.7 μ\mum) that are not often presented in the literature. We also give measurements of the geometric albedo of both planets and discuss the limb-darkening behavior and temporal variability of their reflectivity values for a period of four years (2012-2016). This work is based on observations with the PlanetCam-UPV/EHU instrument at the 1.23 m and 2.2 m telescopes in Calar Alto Observatory (Spain). The instrument simultaneously observes in two channels: visible (VIS; 0.38-1.0 μ\mum) and short-wave infrared (SWIR; 1.0--1.7 μ\mum). We obtained high-resolution observations via the lucky-imaging method. We show that our calibration is consistent with previous independent determinations of reflectivity values of these planets and, for future reference, provide new data extended in the wavelength range and in the time. Our results have an uncertainty in absolute calibration of 10--20\%. We show that under the hypothesis of constant geometric albedo, we are able to detect absolute reflectivity changes related to planetary temporal evolution of about 5-10\%.Comment: 13 pages, 18 figures, (in press
    corecore